Goto Chapter: Top 1 2 3 4 5 6 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[AS72] (Abramowitz, M. and Stegun, I. A., Eds.), Handbook of Mathematical Functions, Dover, New York (1972).

[Bae02] Baez, J., The octonions, Bulletin of the American Mathematical Society, 39 (2) (2002), 145--205.

[BBIT21] Bannai, E., Bannai, E., Ito, T. and Tanaka, R., Algebraic Combinatorics, Walter de Gruyter GmbH, De {Gruyter}, {Series} in {Discrete} {Mathematics} and {Applications} (5), Berlin/Boston (2021)
(OCLC: on1243061900).

[CS03] Conway, J. H. and Smith, D. A., On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, CRC Press (2003).

[CS13] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Springer Science \& Business Media, 290 (2013).

[CVL91] Cameron, P. J. and Van Lint, J. H., Designs, graphs, codes and their links, Cambridge University Press, 3, Cambridge (1991).

[DGS77] Delsarte, P., Goethals, J. M. and Seidel, J. J., Spherical codes and designs, Geometriae Dedicata, 6 (1977), 363--388.

[EG96] Elkies, N. D. and Gross, B. H., The exceptional cone and the Leech lattice, International Mathematics Research Notices, 1996 (14) (1996), 665--698
(Publisher: Citeseer).

[EG01] Elkies, N. D. and Gross, B. H., Cubic Rings and the Exceptional Jordan Algebra, Duke Mathematical Journal, 109 (2) (2001), 383--410.

[FK94] Faraut, J. and Koranyi, A., Analysis on Symmetric Cones, Clarendon Press (1994).

[FKK+00] Faraut, J., Kaneyuki, S., Koranyi, A., Lu, Q.-k. and Roos, G., Analysis and Geometry on Complex Homogeneous Domains, Birkhäuser, Progress in mathematics (185), Boston (2000).

[Hog82] Hoggar, S. G., t-Designs in projective spaces, European Journal of Combinatorics, 3 (3) (1982), 233--254.

[Hog92] Hoggar, S. G., t-Designs with general angle set, European Journal of Combinatorics, 13 (4) (1992), 257--271.

[Lyu09] Lyubich, Y. I., On tight projective designs, Designs, Codes and Cryptography, 51 (1) (2009), 21--31.

[McC04] McCrimmon, K., A Taste of Jordan Algebras, Springer-Verlag, Universitext, New York (2004).

[Nas22] Nasmith, B., Octonions and the two strictly projective tight 5-designs, Algebraic Combinatorics, 5 (3) (2022), 401--411.

[Nas23] Nasmith, B., Tight Projective 5-Designs and Exceptional Structures, {PhD} {Thesis}, Royal Military College of Canada, Kingston ON (2023)
(Accepted: 2023-07-27T12:24:01Z).

[SV00] Springer, T. A. and Veldkamp, F. D., Octonions, Jordan Algebras and Exceptional Groups, Springer-Verlag, Springer {Monographs} in {Mathematics}, Berlin Heidelberg (2000).

[Wil09a] Wilson, R. A., The Finite Simple Groups, Springer-Verlag, Graduate {Texts} in {Mathematics}, London (2009).

[Wil09b] Wilson, R. A., Octonions and the Leech lattice, Journal of Algebra, 322 (6) (2009), 2186--2190.

[Wil11] Wilson, R. A., Conway's group and octonions, Journal of Group Theory, 14 (1) (2011), 1--8.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 Bib Ind

generated by GAPDoc2HTML