[AS72] (Abramowitz, M. and Stegun, I. A., Eds.), Handbook of Mathematical Functions, Dover, New York (1972).
[Bae02] Baez, J., The octonions, Bulletin of the American Mathematical Society, 39 (2) (2002), 145--205.
[BBIT21] Bannai, E., Bannai, E., Ito, T. and Tanaka, R.,
Algebraic Combinatorics,
Walter de Gruyter GmbH,
De {Gruyter}, {Series} in {Discrete} {Mathematics} and
{Applications} (5),
Berlin/Boston
(2021)
(OCLC: on1243061900).
[CS03] Conway, J. H. and Smith, D. A., On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, CRC Press (2003).
[CS13] Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Springer Science \& Business Media, 290 (2013).
[CVL91] Cameron, P. J. and Van Lint, J. H., Designs, graphs, codes and their links, Cambridge University Press, 3, Cambridge (1991).
[DGS77] Delsarte, P., Goethals, J. M. and Seidel, J. J., Spherical codes and designs, Geometriae Dedicata, 6 (1977), 363--388.
[EG96] Elkies, N. D. and Gross, B. H.,
The exceptional cone and the Leech lattice,
International Mathematics Research Notices,
1996 (14)
(1996),
665--698
(Publisher: Citeseer).
[EG01] Elkies, N. D. and Gross, B. H., Cubic Rings and the Exceptional Jordan Algebra, Duke Mathematical Journal, 109 (2) (2001), 383--410.
[FK94] Faraut, J. and Koranyi, A., Analysis on Symmetric Cones, Clarendon Press (1994).
[FKK+00] Faraut, J., Kaneyuki, S., Koranyi, A., Lu, Q.-k. and Roos, G., Analysis and Geometry on Complex Homogeneous Domains, Birkhäuser, Progress in mathematics (185), Boston (2000).
[Hog82] Hoggar, S. G., t-Designs in projective spaces, European Journal of Combinatorics, 3 (3) (1982), 233--254.
[Hog92] Hoggar, S. G., t-Designs with general angle set, European Journal of Combinatorics, 13 (4) (1992), 257--271.
[Lyu09] Lyubich, Y. I., On tight projective designs, Designs, Codes and Cryptography, 51 (1) (2009), 21--31.
[McC04] McCrimmon, K., A Taste of Jordan Algebras, Springer-Verlag, Universitext, New York (2004).
[Nas22] Nasmith, B., Octonions and the two strictly projective tight 5-designs, Algebraic Combinatorics, 5 (3) (2022), 401--411.
[Nas23] Nasmith, B.,
Tight Projective 5-Designs and Exceptional
Structures,
{PhD} {Thesis},
Royal Military College of Canada,
Kingston ON
(2023)
(Accepted: 2023-07-27T12:24:01Z).
[SV00] Springer, T. A. and Veldkamp, F. D., Octonions, Jordan Algebras and Exceptional Groups, Springer-Verlag, Springer {Monographs} in {Mathematics}, Berlin Heidelberg (2000).
[Wil09a] Wilson, R. A., The Finite Simple Groups, Springer-Verlag, Graduate {Texts} in {Mathematics}, London (2009).
[Wil09b] Wilson, R. A., Octonions and the Leech lattice, Journal of Algebra, 322 (6) (2009), 2186--2190.
[Wil11] Wilson, R. A., Conway's group and octonions, Journal of Group Theory, 14 (1) (2011), 1--8.
generated by GAPDoc2HTML